Linear Manifolds in the Moduli Space of One-forms
نویسنده
چکیده
We study closures of GL+2 (R)-orbits on the total space ΩMg of the Hodge bundle over the moduli space of curves under the assumption that they are algebraic manifolds. We show that, in the generic stratum, such manifolds are the whole stratum, the hyperelliptic locus or parameterize curves whose Jacobian has additional endomorphisms. This follows from a cohomological description of the tangent bundle to ΩMg . For nongeneric strata similar results can be shown by a case-by-case inspection. We also propose to study a notion of ’linear manifold’ that comprises Teichmüller curves, Hilbert modular surfaces and the ball quotients of Deligne and Mostow. Moreover, we give an explanation for the difference between Hilbert modular surfaces and Hilbert modular threefolds with respect to this notion of linearity.
منابع مشابه
Contact Spheres and Hyperk¨ahler Geometry
A taut contact sphere on a 3-manifold is a linear 2-sphere of contact forms, all defining the same volume form. In the present paper we completely determine the moduli of taut contact spheres on compact left-quotients of SU(2) (the only closed manifolds admitting such structures). We also show that the moduli space of taut contact spheres embeds into the moduli space of taut contact circles. Th...
متن کاملGroup cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds
We use group cohomology and the de Rham complex on simplicial manifolds to give explicit differential forms representing generators of the cohomology rings of moduli spaces of representations of fundamental groups of 2-manifolds. These generators are constructed using the de Rham representatives for the cohomology of classifying spaces BK where K is a compact Lie group; such representatives (un...
متن کاملSymplectic Forms on Moduli Spaces of Flat Connections on 2-Manifolds
Let G be a compact connected semisimple Lie group. We extend the techniques of Weinstein [W] to give a construction in group cohomology of symplectic forms ω on ‘twisted’ moduli spaces of representations of the fundamental group π of a 2-manifold Σ (the smooth analogues of Hom(π1(Σ), G)/G) and on relative character varieties of fundamental groups of 2-manifolds. We extend this construction to e...
متن کاملWeil-Petersson Volumes of the Moduli Spaces of CY Manifolds
In this paper it is proved that the volumes of the moduli spaces of polarized Calabi-Yau manifolds with respect to Weil-Petersson metrics are rational numbers. Mumford introduce the notion of a good metric on vector bundle over a quasi-projective variety in [10]. He proved that the Chern forms of good metrics define classes of cohomology with integer coefficients on the compactified quasi-proje...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کامل